跳至主要內容

JUC 集合之 ConcurrentLinkedQueue 详解

Cactus li...大约 13 分钟JavaJavaThreadconcurrency

ConcurerntLinkedQueue一个基于链接节点的无界线程安全队列。此队列按照 FIFO(先进先出)原则对元素进行排序。队列的头部是队列中时间最长的元素。队列的尾部 是队列中时间最短的元素。新的元素插入到队列的尾部,队列获取操作从队列头部获得元素。当多个线程共享访问一个公共 collection 时,ConcurrentLinkedQueue是一个恰当的选择。此队列不允许使用null元素。

# 带着BAT大厂的面试问题去理解

提示

请带着这些问题继续后文,会很大程度上帮助你更好的理解相关知识点。@pdai

  • 要想用线程安全的队列有哪些选择? Vector,Collections.synchronizedList(List<T> list), ConcurrentLinkedQueue等
  • ConcurrentLinkedQueue实现的数据结构?
  • ConcurrentLinkedQueue底层原理? 全程无锁(CAS)
  • ConcurrentLinkedQueue的核心方法有哪些? offer(),poll(),peek(),isEmpty()等队列常用方法
  • 说说ConcurrentLinkedQueue的HOPS(延迟更新的策略)的设计?
  • ConcurrentLinkedQueue适合什么样的使用场景?

# ConcurrentLinkedQueue数据结构

通过源码分析可知,ConcurrentLinkedQueue的数据结构与LinkedBlockingQueue的数据结构相同,都是使用的链表结构。ConcurrentLinkedQueue的数据结构如下:

img
img

说明: ConcurrentLinkedQueue采用的链表结构,并且包含有一个头节点和一个尾结点。

# ConcurrentLinkedQueue源码分析

# 类的继承关系

public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
        implements Queue<E>, java.io.Serializable {}

说明: ConcurrentLinkedQueue继承了抽象类AbstractQueue,AbstractQueue定义了对队列的基本操作;同时实现了Queue接口,Queue定义了对队列的基本操作,同时,还实现了Serializable接口,表示可以被序列化。

# 类的内部类

private static class Node<E> {
    // 元素
    volatile E item;
    // next域
    volatile Node<E> next;

    /**
        * Constructs a new node.  Uses relaxed write because item can
        * only be seen after publication via casNext.
        */
    // 构造函数
    Node(E item) {
        // 设置item的值
        UNSAFE.putObject(this, itemOffset, item);
    }
    // 比较并替换item值
    boolean casItem(E cmp, E val) {
        return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
    }
    
    void lazySetNext(Node<E> val) {
        // 设置next域的值,并不会保证修改对其他线程立即可见
        UNSAFE.putOrderedObject(this, nextOffset, val);
    }
    // 比较并替换next域的值
    boolean casNext(Node<E> cmp, Node<E> val) {
        return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
    }

    // Unsafe mechanics
    // 反射机制
    private static final sun.misc.Unsafe UNSAFE;
    // item域的偏移量
    private static final long itemOffset;
    // next域的偏移量
    private static final long nextOffset;

    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> k = Node.class;
            itemOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("item"));
            nextOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("next"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }
}

说明: Node类表示链表结点,用于存放元素,包含item域和next域,item域表示元素,next域表示下一个结点,其利用反射机制和CAS机制来更新item域和next域,保证原子性。

# 类的属性

public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
        implements Queue<E>, java.io.Serializable {
    // 版本序列号        
    private static final long serialVersionUID = 196745693267521676L;
    // 反射机制
    private static final sun.misc.Unsafe UNSAFE;
    // head域的偏移量
    private static final long headOffset;
    // tail域的偏移量
    private static final long tailOffset;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> k = ConcurrentLinkedQueue.class;
            headOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("head"));
            tailOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("tail"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }
    
    // 头节点
    private transient volatile Node<E> head;
    // 尾结点
    private transient volatile Node<E> tail;
}

说明: 属性中包含了head域和tail域,表示链表的头节点和尾结点,同时,ConcurrentLinkedQueue也使用了反射机制和CAS机制来更新头节点和尾结点,保证原子性。

# 类的构造函数

  • ConcurrentLinkedQueue()型构造函数
public ConcurrentLinkedQueue() {
    // 初始化头节点与尾结点
    head = tail = new Node<E>(null);
}

说明: 该构造函数用于创建一个最初为空的 ConcurrentLinkedQueue,头节点与尾结点指向同一个结点,该结点的item域为null,next域也为null。

  • ConcurrentLinkedQueue(Collection<? extends E>)型构造函数
public ConcurrentLinkedQueue(Collection<? extends E> c) {
    Node<E> h = null, t = null;
    for (E e : c) { // 遍历c集合
        // 保证元素不为空
        checkNotNull(e);
        // 新生一个结点
        Node<E> newNode = new Node<E>(e);
        if (h == null) // 头节点为null
            // 赋值头节点与尾结点
            h = t = newNode;
        else {
            // 直接头节点的next域
            t.lazySetNext(newNode);
            // 重新赋值头节点
            t = newNode;
        }
    }
    if (h == null) // 头节点为null
        // 新生头节点与尾结点
        h = t = new Node<E>(null);
    // 赋值头节点
    head = h;
    // 赋值尾结点
    tail = t;
}

说明: 该构造函数用于创建一个最初包含给定 collection 元素的 ConcurrentLinkedQueue,按照此 collection 迭代器的遍历顺序来添加元素。

# 核心函数分析

# offer函数

public boolean offer(E e) {
    // 元素不为null
    checkNotNull(e);
    // 新生一个结点
    final Node<E> newNode = new Node<E>(e);

    for (Node<E> t = tail, p = t;;) { // 无限循环
        // q为p结点的下一个结点
        Node<E> q = p.next;
        if (q == null) { // q结点为null
            // p is last node
            if (p.casNext(null, newNode)) { // 比较并进行替换p结点的next域
                // Successful CAS is the linearization point
                // for e to become an element of this queue,
                // and for newNode to become "live".
                if (p != t) // p不等于t结点,不一致    // hop two nodes at a time
                    // 比较并替换尾结点
                    casTail(t, newNode);  // Failure is OK.
                // 返回
                return true;
            }
            // Lost CAS race to another thread; re-read next
        }
        else if (p == q) // p结点等于q结点
            // We have fallen off list.  If tail is unchanged, it
            // will also be off-list, in which case we need to
            // jump to head, from which all live nodes are always
            // reachable.  Else the new tail is a better bet.
            // 原来的尾结点与现在的尾结点是否相等,若相等,则p赋值为head,否则,赋值为现在的尾结点
            p = (t != (t = tail)) ? t : head;
        else
            // Check for tail updates after two hops.
            // 重新赋值p结点
            p = (p != t && t != (t = tail)) ? t : q;
    }
}

说明: offer函数用于将指定元素插入此队列的尾部。下面模拟offer函数的操作,队列状态的变化(假设单线程添加元素,连续添加10、20两个元素)。

img
img
  • 若ConcurrentLinkedQueue的初始状态如上图所示,即队列为空。单线程添加元素,此时,添加元素10,则状态如下所示
img
img
  • 如上图所示,添加元素10后,tail没有变化,还是指向之前的结点,继续添加元素20,则状态如下所示
img
img
  • 如上图所示,添加元素20后,tail指向了最新添加的结点。

# poll函数

public E poll() {
    restartFromHead:
    for (;;) { // 无限循环
        for (Node<E> h = head, p = h, q;;) { // 保存头节点
            // item项
            E item = p.item;

            if (item != null && p.casItem(item, null)) { // item不为null并且比较并替换item成功
                // Successful CAS is the linearization point
                // for item to be removed from this queue.
                if (p != h) // p不等于h    // hop two nodes at a time
                    // 更新头节点
                    updateHead(h, ((q = p.next) != null) ? q : p); 
                // 返回item
                return item;
            }
            else if ((q = p.next) == null) { // q结点为null
                // 更新头节点
                updateHead(h, p);
                return null;
            }
            else if (p == q) // p等于q
                // 继续循环
                continue restartFromHead;
            else
                // p赋值为q
                p = q;
        }
    }
}

说明: 此函数用于获取并移除此队列的头,如果此队列为空,则返回null。下面模拟poll函数的操作,队列状态的变化(假设单线程操作,状态为之前offer10、20后的状态,poll两次)。

img
img
  • 队列初始状态如上图所示,在poll操作后,队列的状态如下图所示
img
img
  • 如上图可知,poll操作后,head改变了,并且head所指向的结点的item变为了null。再进行一次poll操作,队列的状态如下图所示。
img
img
  • 如上图可知,poll操作后,head结点没有变化,只是指示的结点的item域变成了null。

# remove函数

public boolean remove(Object o) {
    // 元素为null,返回
    if (o == null) return false;
    Node<E> pred = null;
    for (Node<E> p = first(); p != null; p = succ(p)) { // 获取第一个存活的结点
        // 第一个存活结点的item值
        E item = p.item;
        if (item != null &&
            o.equals(item) &&
            p.casItem(item, null)) { // 找到item相等的结点,并且将该结点的item设置为null
            // p的后继结点
            Node<E> next = succ(p);
            if (pred != null && next != null) // pred不为null并且next不为null
                // 比较并替换next域
                pred.casNext(p, next);
            return true;
        }
        // pred赋值为p
        pred = p;
    }
    return false;
}

说明: 此函数用于从队列中移除指定元素的单个实例(如果存在)。其中,会调用到first函数和succ函数,first函数的源码如下

Node<E> first() {
    restartFromHead:
    for (;;) { // 无限循环,确保成功
        for (Node<E> h = head, p = h, q;;) {
            // p结点的item域是否为null
            boolean hasItem = (p.item != null);
            if (hasItem || (q = p.next) == null) { // item不为null或者next域为null
                // 更新头节点
                updateHead(h, p);
                // 返回结点
                return hasItem ? p : null;
            }
            else if (p == q) // p等于q
                // 继续从头节点开始
                continue restartFromHead;
            else
                // p赋值为q
                p = q;
        }
    }
}

说明: first函数用于找到链表中第一个存活的结点。succ函数源码如下

final Node<E> succ(Node<E> p) {
    // p结点的next域
    Node<E> next = p.next;
    // 如果next域为自身,则返回头节点,否则,返回next
    return (p == next) ? head : next;
}

说明: succ用于获取结点的下一个结点。如果结点的next域指向自身,则返回head头节点,否则,返回next结点。下面模拟remove函数的操作,队列状态的变化(假设单线程操作,状态为之前offer10、20后的状态,执行remove(10)、remove(20)操作)。

img
img
  • 如上图所示,为ConcurrentLinkedQueue的初始状态,remove(10)后的状态如下图所示
img
img
  • 如上图所示,当执行remove(10)后,head指向了head结点之前指向的结点的下一个结点,并且head结点的item域置为null。继续执行remove(20),状态如下图所示
img
img
  • 如上图所示,执行remove(20)后,head与tail指向同一个结点,item域为null。

# size函数

public int size() {
    // 计数
    int count = 0;
    for (Node<E> p = first(); p != null; p = succ(p)) // 从第一个存活的结点开始往后遍历
        if (p.item != null) // 结点的item域不为null
            // Collection.size() spec says to max out
            if (++count == Integer.MAX_VALUE) // 增加计数,若达到最大值,则跳出循环
                break;
    // 返回大小
    return count;
}

说明: 此函数用于返回ConcurrenLinkedQueue的大小,从第一个存活的结点(first)开始,往后遍历链表,当结点的item域不为null时,增加计数,之后返回大小。

# ConcurrentLinkedQueue示例

下面通过一个示例来了解ConcurrentLinkedQueue的使用

import java.util.concurrent.ConcurrentLinkedQueue;

class PutThread extends Thread {
    private ConcurrentLinkedQueue<Integer> clq;
    public PutThread(ConcurrentLinkedQueue<Integer> clq) {
        this.clq = clq;
    }
    
    public void run() {
        for (int i = 0; i < 10; i++) {
            try {
                System.out.println("add " + i);
                clq.add(i);
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

class GetThread extends Thread {
    private ConcurrentLinkedQueue<Integer> clq;
    public GetThread(ConcurrentLinkedQueue<Integer> clq) {
        this.clq = clq;
    }
    
    public void run() {
        for (int i = 0; i < 10; i++) {
            try {
                System.out.println("poll " + clq.poll());
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

public class ConcurrentLinkedQueueDemo {
    public static void main(String[] args) {
        ConcurrentLinkedQueue<Integer> clq = new ConcurrentLinkedQueue<Integer>();
        PutThread p1 = new PutThread(clq);
        GetThread g1 = new GetThread(clq);
        
        p1.start();
        g1.start();
        
    }
}

运行结果(某一次):

add 0
poll null
add 1
poll 0
add 2
poll 1
add 3
poll 2
add 4
poll 3
add 5
poll 4
poll 5
add 6
add 7
poll 6
poll 7
add 8
add 9
poll 8

说明: GetThread线程不会因为ConcurrentLinkedQueue队列为空而等待,而是直接返回null,所以当实现队列不空时,等待时,则需要用户自己实现等待逻辑。

# 再深入理解

# HOPS(延迟更新的策略)的设计

通过上面对offer和poll方法的分析,我们发现tail和head是延迟更新的,两者更新触发时机为:

  • tail更新触发时机:当tail指向的节点的下一个节点不为null的时候,会执行定位队列真正的队尾节点的操作,找到队尾节点后完成插入之后才会通过casTail进行tail更新;当tail指向的节点的下一个节点为null的时候,只插入节点不更新tail。
  • head更新触发时机:当head指向的节点的item域为null的时候,会执行定位队列真正的队头节点的操作,找到队头节点后完成删除之后才会通过updateHead进行head更新;当head指向的节点的item域不为null的时候,只删除节点不更新head。

并且在更新操作时,源码中会有注释为:hop two nodes at a time。所以这种延迟更新的策略就被叫做HOPS的大概原因是这个(猜的 😃),从上面更新时的状态图可以看出,head和tail的更新是“跳着的”即中间总是间隔了一个。那么这样设计的意图是什么呢?

如果让tail永远作为队列的队尾节点,实现的代码量会更少,而且逻辑更易懂。但是,这样做有一个缺点,如果大量的入队操作,每次都要执行CAS进行tail的更新,汇总起来对性能也会是大大的损耗。如果能减少CAS更新的操作,无疑可以大大提升入队的操作效率,所以doug lea大师每间隔1次(tail和队尾节点的距离为1)进行才利用CAS更新tail。对head的更新也是同样的道理,虽然,这样设计会多出在循环中定位队尾节点,但总体来说读的操作效率要远远高于写的性能,因此,多出来的在循环中定位尾节点的操作的性能损耗相对而言是很小的。

# ConcurrentLinkedQueue适合的场景

ConcurrentLinkedQueue通过无锁来做到了更高的并发量,是个高性能的队列,但是使用场景相对不如阻塞队列常见,毕竟取数据也要不停的去循环,不如阻塞的逻辑好设计,但是在并发量特别大的情况下,是个不错的选择,性能上好很多,而且这个队列的设计也是特别费力,尤其的使用的改良算法和对哨兵的处理。整体的思路都是比较严谨的,这个也是使用了无锁造成的,我们自己使用无锁的条件的话,这个队列是个不错的参考。

你认为这篇文章怎么样?
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.1.3